Карданные передачи способствуют переходу крутящего момента. В двухосной конструкции автомобиля с ведущим происходит переход от коробки к заднему мосту.
Карданный вал - это конструкция, передняя часть которой связана с ведомым валом коробки посредством шарнира. Задняя часть соединяется с ведущей конической шестерней, которая постоянно зацеплена с большой конической ведомой образуют автомобиля. Она подводит крутящий момент к ведущим колесам.
Необходимо в связи с особым расположением карданного вала и вала коробки. Они находятся под некоторым углом. Изменение угла наклона карданного вала относительно ведомого происходит в том случае, когда производится перемещение ведущего моста, подвешенного на рессорах, относительно коробки и рамы при наезде на неровности на дороге. Изменения происходят в небольшом диапазоне и в случае, когда меняется величина прогиба рессор на ведущем мосту. Это случается при снижении или повышении полезной нагрузки авто.
Карданная передача может состоять из шарниров упругой или жесткой конструкции. Шарнир имеет крестовину. Ее шипы входят в специальные отверстия вилок, которые располагаются в двух взаимноперепендикулярных плоскостях. Втулка одной из вилок соединяется с валом коробки, а втулка другой - надевается на шлицы кардана.
Шарнир обеспечивает перемещение. Благодаря его наличию карданный вал перемещается под углом относительно ведомого вала в коробке в разном направлении. Колебания заднего моста способствуют незначительному изменению расстояния между ним и коробкой. Это происходит благодаря тому, что передний шлицевой конец карданного вала обладает способностью к скольжению во втулке шарнирной вилки.
Шарниры в некоторых случаях помещаются в специальные кожухи. Так, обеспечивается их защита от проникновения грязи, а также удерживается смазка внутри. Кожухи обычно состоят из двух полусфер.
Жесткий шарнир, который включает в себя карданная передача, состоит из фланца, ведущей вилки, сальника, игольчатого подшипника, обоймы подшипника, крышки, замковой шайбы, масленок, ведомой вилки и ее втулки, крестовины.
В шарнире есть две вилки. Ведущая соединена посредством фланца с ведомым валом коробки, а ведомая посредством втулки соединена со шлицами, расположенными в переднем конце карданного вала. Между собой вилки состыкованы при помощи крестовины с четырьмя шипами.
Упругий шарнир, из которого также может состоять карданная передача, включает в себя, как правило, несколько прорезиненных упругих дисков. К ним с каждой стороны приворачиваются втулки с тремя вилками-лапками.
В автомобилях ГАЗ-51 карданная передача имеет особую конструкцию. В нее входят шарниры, промежуточная опора. Кроме того, здесь имеется два карданных вала. Один из них - промежуточный. Присутствие двух валов необходимо для уменьшения длины карданного вала и повышения его жесткости. Задняя часть промежуточного вращается в установлен в резиновом кольце в опоре, кронштейн которой присоединен к поперечине на раме.
Эластичность резинового кольца обеспечивает возможность подшипника к самостоятельной установке при деформациях, которым подвергается рама, или в случае неточной его установки.
Для двухосного автомобиля характерен переход крутящего момента от коробки посредством трех валов с шестью шарнирами.
В трехосной конструкции авто предусмотрено три ведущих моста. Здесь, кроме прочих, присутствует два карданных вала. Они используются для привода дополнительного одного заднего моста. Эти валы имеют четыре шарнира, а также промежуточную опору, расположенную на ведущем среднем мосту.
Карданная передача
:
1 - эластичная муфта;
2 - болт крепления эластичной муфты к фланцу;
3 - крестовина;
4 - сальник;
5 - стопорное кольцо;
6 - подшипник крестовины;
7 - гайка;
8 - фланец эластичной муфты;
9 - сальник;
10 - обойма сальника;
11 - кронштейн безопасности;
12 - болт крепления кронштейна к промежуточной опоре;
13 - передний карданный вал;
14 - кронштейн промежуточной опоры;
15 - промежуточная опора;
16 - вилка переднего карданного вала;
17 - задний карданный вал;
18 - вилка заднего карданного вала;
19 - фланец ведущей шестерни главной передачи;
20 - гайка;
21 - болт крепления вилки
В трансмиссиях автомобилей карданные передачи применяются для передачи моментов между валами, оси которых не лежат на одной прямой и изменяют свое положение в пространстве. В общем случае, карданная передача состоит из карданных валов, карданных шарни
ров, промежуточных опор и соединительных устройств.
По компоновке карданные передачи классифицируются на закрытые
и открытые
.
Закрытая карданная передача
размещается внутри трубы. Труба может воспринимать силы и реакции, возникающие на ведущем мосту, и служить направляющим элементом подвески . В такой карданной передаче применяется только один шарнир, а неравномерность вращения карданного вала компенсируется его упругостью. Известны конструкции, в которых роль карданного вала выполняет торсион (упругий вал небольшого диаметра), при этом карданные шарниры отсутствуют.
Конструкция промежуточной опоры
:
1 - вилка;
2 - упругая подушка;
3 - подшипник промежуточной опоры
Открытая передача
не имеет трубы, и реактивный момент воспринимается рессорами или реактивными тягами. Карданная передача должна иметь не менее двух шарниров и компенсирующее звено, так как расстояние между соединенными агрегатами в процессе движения изменяется. На длиннобазных автомобилях применяют карданную передачу, состоящую из двух валов. Этим исключается возможность совпадения критической угловой скорости вала с эксплуатационной. Уменьшение длины вала повышает его критическую частоту вращения, которая должна как минимум в 1,5 раза превышать максимально возможную при эксплуатации. Конструкция карданной передачи с двумя валами требует применения промежуточной опоры
одного из валов, подшипник которой для компенсации возможного осевого перемещения силового агрегата на раме или кузове установлен в эластичном кольце.
Карданные шарниры при всем многообразии конструкций и по кинематическим характеристикам и допустимым углам между валами могут быть классифицированы так, как это показано в таблице.
Карданный шарнир неравных угловых скоростей был изобретен в XVI в. итальянским математиком Джироламо Кардано и первоначально нашел применение для подвешивания фонарей в экипажах. Позже английский ученый Роберт Гук дал математическое описание кинематики данного механизма.
Детали карданной передачи (а) и график зависимости угловых скоростей (б):
1 - шлицевая вилка;
2 - П-образная пластина;
3 - стопорная шайба;
4 - крестовина;
5 - вилка заднего карданного вала;
6 - задний карданный вал;
7 - фланец ведущей шестерни главной передачи;
8 - задний карданный шарнир;
9 - игольчатый подшипник;
10 - стопорное кольцо;
11 - болт; 12 - уплотнительное кольцо;
α
- угол поворота ведущего вала;
β
- угол поворота ведомого вала;
γ
- угол между валами
Анализ схемы карданного шарнира показывает, что при постоянной угловой скорости ведущего вала ведомый вращается циклически: за один оборот дважды отстает и дважды обгоняет ведущий вал. При этом с увеличением угла γ между валами неравномерность вращения интенсивно возрастает. Для того чтобы карданная передача с шарнирами неравных угловых скоростей передавала синхронное вращение между валами соединенных агрегатов, она должна состоять из нескольких шарниров, взаимное расположение которых будет компенсировать неравномерную передачу вращения каждого шарнира. По этой причине минимальное количество шарниров должно быть равно 2. При этом в карданной передаче с двумя шарнирами необходимо соблюдение следующих компоновочных требований
:
- ведущие вилки расположены под углом 90 ° одна относительно другой;
- углы между валами в обоих шарнирах γ1 и γ2 равны между собой;
- все валы лежат в одной плоскости.
Карданный шарнир неравных угловых скоростей
Для карданных передач, имеющих число шарниров неравных угловых скоростей более трех, синхронность вращения валов соединенных агрегатов достигается определенным соотношением углов между валами всех шарниров, при этом соотношение зависит от числа шарниров. Карданный шарнир неравных угловых скоростей состоит из двух вилок, в цилиндрические отверстия которых вставлены концы крестовины. Вилки жестко закреплены на валах. При вращении валов концы крестовины перемещаются относительно плоскости, перпендикулярной к оси вала.
Крестовина карданного шарнира должна строго центрироваться для исключения переменного дисбаланса карданного вала при его вращении. Центрирование достигается точной фиксацией обойм подшипников при помощи стопорных колец или крышек, которые прикрепляются к вилкам шарнира. Минимальный угол между валами должен быть не менее 2°, иначе цапфы крестовин деформируются иглами и шарнир быстро разрушается (явление бринеллирования
).
Развитие конструкций карданных шарниров неравных угловых скоростей шло по пути снижения потерь, связанных с вращениями концов крестовины в отверстиях вилок. В конструкциях первых шарниров концы крестовины устанавливались на подшипниках скольжения.
С учетом того что в трансмиссии многоосных автомобилей число шарниров может превышать два десятка, применение в них подшипников скольжения может существенно снижать общий КПД трансмиссии. В карданных шарнирах современных автомобилей применяются только игольчатые подшипники качения.
В прежних конструкциях применялась смазка, которую было необходимо периодически обновлять через специальную масленку. Карданные шарниры современных автомобилей обычно заправляются высококачественной пластичной смазкой, при сборке и в эксплуатации ее не заменяют.
Что входит в устройство карданной передачи?
Карданная передача автомобиля ЗИЛ-130 (рис.130) состоит из карданных шарниров I, карданных валов II, промежуточной опоры III (на некоторых автомобилях с короткой базой промежуточная опора может не устанавливаться). Карданный вал представляет собой стальную пустотелую трубу 11, к концам которой приварены вилки с проушинами карданного шарнира. Так как во время прогиба рессор изменяется расстояние между осями автомобиля, то к одной вилке карданного шарнира приваривают стальной вал 15 со шлицами, который входит во втулку со шлицами 16, приваренную к ведомой вилке 17, что позволяет компенсировать изменяющееся расстояние между осями автомобиля.
Рис.130. Карданная передача автомобиля ЗИЛ-130.
Что представляет собой карданный шарнир?
Карданный шарнир представляет собой подвижное сочленение, передающее крутящий момент с одного вала на другой при изменяющемся угле наклона.
Каких типов могут быть карданные шарниры?
Карданные шарниры могут быть упругими (мягкими), жесткими на игольчатых подшипниках и равных угловых скоростей. Упругие карданные шарниры применяют в передачах, где угол между соединяемыми валами не превышает 5°. Жесткими карданными шарнирами соединяют валы с углами между ними до 25°. Карданными шарнирами равных угловых скоростей соединяют части полуоси переднего ведущего моста, передающего крутящий момент при повороте управляемых колес до 40°.
Как устроен и работает жесткий карданный шарнир?
Жесткий карданный шарнир состоит из двух вилок 1 и 8, соединенных между собой крестовиной 7, на шипы которой одеты стаканы 4 с игольчатыми подшипниками 5 и сальниками 6. Стаканы плотно входят в проушины вилок и удерживаются там крышками 3 и стопорными пластинами 2, прикручиваемыми болтами или удерживаемыми стопорными кольцами. Игольчатые подшипники смазывают через масленку 10 до появления масла с предохранительного клапана 9 или из-под уплотнительных колец 6. Вилка 18 жестко крепится к фланцу вторичного вала коробки передач, вилка 17 приварена к втулке со шлицами 16 или трубе карданного вала. При вращении вторичного вала крутящий момент передается ведущей вилке 18 через подшипники и крестовину на ведомую вилку 17 и карданный вал. Вилка 8 соединяется с фланцем, установленным на валу ведущей шестерни главной передачи и приводит ее во вращательное движение.
Как устроена и работает промежуточная опора?
Промежуточная опора состоит из шарикоподшипника 13 помешенного в резиновую обойму 12, закрытую металлическим кожухом. Опора крепится к поперечине рамы автомобиля. Промежуточная опора позволяет уменьшить длину карданного вала, передающего крутящий момент под углом, и предотвратить появление крутильных колебаний и биение вала, что увеличивает срок службы подшипников и способствует плавному ходу автомобиля. Подшипник промежуточной опоры и шлицевое соединение карданного вала смазывают вязкой смазкой УС-1, утечка которого предотвращается сальниками 14. Снаружи шлицевое соединение карданного пала закрыто резиновым гофрированным чехлом, предотвращающим попадание пыли и влаги на шлицы.
Что представляет собой упругий полукарданный шарнир?
Упругий полукарданный шарнир представляет собой резиновую обойму с металлическими втулками и соединяет ведущую и ведомую вилки.
Ведущий мост
Какой мост на автомобиле ведущий и какое его назначение?
На большинстве автомобилей ведущим является задний мост. На некоторых автомобилях (КамАЗ, ЗИЛ-133, Урал-377) устанавливают два задних ведущих моста. На автомобилях повышенной проходимости все мосты ведущие. Передний мост в этом случае является ведущим и управляемым. Ведущий мост главной передачей воспринимает крутящий момент от карданной передачи, увеличивает его и через дифференциал распределяет его по колесам. Кроме того, ведущий мост воспринимает часть общей массы автомобиля и передает ее на точки опоры (колеса).
Как устроен ведущий мост?
Ведущий мост состоит из картера, представляющего собой стальную или чугунную пустотелую конструкцию, в которой монтируется главная передача, дифференциал, полуоси. В картер ввариваются или приклепываются стальные термически обработанные трубы с площадками и резьбой для установки подшипников, а также регулировки и крепления ступиц колес. Внутри трубы проходит полуось, подводящий крутящий момент к колесу.
Какое назначение главной передачи на автомобиле, какой она бывает?
Главная передача – механизм трансмиссии автомобиля, преобразующий крутящий момент и расположенный перед ведущими колесами автомобиля, передает крутящий момент на полуоси под прямым углом и повышает тяговые усилия кроме того, что дает коробка передач и раздаточная коробка. Главная передача может быть шестеренной или червячной. Наибольшее распространение получили шестеренные передачи, которые могут быть одинарными центральными или гипоидными, а также двойными неразнесенными (ЗИЛ-130) и разнесенными (МАЗ-500А).
Как устроена и работает одинарная гипоидная главная передача?
Одинарная главная передача с гипоидным зацеплением зубьев шестерен устанавливается на легковых автомобилях и грузовых автомобилях средней и небольшой грузоподъемности (ГАЗ, УАЗ1. Такая передача (рис.131, а) состоит из малой ведущей шестерни 1, изготовленной вместе с валом, находящейся в постоянном зацеплении с большой ведомой шестерней 2, жестко прикрепленной к чашкам дифференциала и через их подшипники опирающейся на картер моста. Вал ведущей шестерни соединяется с карданной передачей, ведомая шестерня через дифференциал – с полуосями 3. Она имеет в несколько раз больше зубьев, чем ведущая, что и обеспечивает повышение крутящего момента на ведущих колесах. Ось малой ведущей шестерни опущена ниже оси большой ведомой шестерни, что позволяет опустить центр тяжести автомобиля и тем самым повысить его устойчивость при движении на высоких скоростях. Гипоидные передачи бесшумны и долговечны в работе, у них большая толщина и длина зубьев, находящихся в одновременном зацеплении, что увеличивает срок службы. Однако между зубьями таких передач давление более высокое, чем у центральной передачи, поэтому для их смазки применяется специальная гипоидная смазка.
Рис.131. Типы главных передач:
а – одинарная; б – двойная; в – планетарная.
Какая одинарная главная передача называется центральной?
Центральной одинарной главной передачей называется передача, в которой оси малой ведущей и большой ведомой шестерен находятся в одной плоскости, т. е. пересекаются.
Как определяется передаточное отношение одинарной главной передачи?
Передаточное отношение U ГП одинарной главной передачи определяется как отношение количества зубьев ведомой шестерни Z ВЕД к количеству зубьев ведущей шестерни
Как устроена и работает двойная главная передача?
В двойной главной передаче (рис.131, б) в передаче крутящего момента участвуют две пары шестерен: пара конических 4 и 5 и пара цилиндрических 6 и 7. Вал малой ведущей шестерни 4 соединен с карданной передачей. Большая ведомая шестерня 5 установлена на одном валу с малой цилиндрической 6, а большая ведомая цилиндрическая шестерня 7 через дифференциал соединена с полуосями. Крутящий момент передается от малой ведущей шестерни 4 к ведомой 5, где происходит первое снижение частоты вращения. Так как ведомая шестерня 5 смонтирована на одном валу с малой ведущей цилиндрической шестерней 6, то она уже становится ведущей и вращает большую ведомую цилиндрическую шестерню 7, производя повторное снижение частоты вращения. Общее передаточное отношение главной передачи равно произведению передаточных отношений пары конических Uк и пары цилиндрических Uц шестерен, т. е. U ГП = U К ·U Ц. Например, определим общее передаточное отношение главной передачи автомобиля ЗИЛ-130, у которого малая ведущая коническая шестерня имеет Z КВ = 13, большая ведомая коническая Z К ВЕД = 25, малая ведущая цилиндрическая шестерня Z ЦВ = 14, большая ведомая цилиндрическая шестерня Z Ц ВЕД = 47 зубьев, тогда:
U ГП = U К · U Ц = 1,92 · 3,36 = 6,45.
Это значит, что частота вращения шестерен уменьшится в 6,45 раза, а тяговые усилия на ведущих колесах увеличатся во столько же раз. Поэтому двойные главные передачи обычно применяют в тех случаях, когда необходимо получить большое передаточное отношение при небольших размерах ведущего моста.
Как устроена и работает двойная разнесенная передача?
Двойная разнесенная передача (автомобиль МАЗ-500А) состоит из пары конических шестерен, устанавливаемых в картере заднего моста и планетарной передачи, устанавливаемой в колесах (рис.131, в).
Планетарная передача имеет ведущую солнечную шестерню 11, жестко соединенную с полуосью 10, цилиндрические сателлиты 9, смонтированные на роликовых цилиндрических подшипниках на осях 8, которые неподвижно закреплены в чашках водила на фланце полуосевого рукава ведущего моста, и ведомую коронную шестерню 12, соединенную со ступицей колеса. При вращении полуоси солнечная шестерня 11 через сателлиты 9 передает крутящий момент на коронную шестерню и ступицу колеса. Общее передаточное отношение такой передачи определяется как произведение передаточных отношений конических шестерен и колесного редуктора.
Применение колесных планетарных передач позволяет уменьшить габариты главной передачи, увеличить дорожный просвет (клиренс) и разгрузить шестерни, дифференциал и полуоси от повышенных усилий, улучшая их работу. Кроме того, путем замены шестерен в колесных передачах проще изменить передаточное отношение ведущего моста при создании модификаций автомобилей.
Как подразделяются дифференциалы?
По конструктивному исполнению дифференциалы могут быть шестеренными и кулачковыми. Шестеренные могут быть с коническими и цилиндрическими шестернями. По типу выключающего механизма дифференциалы могут быть без блокировки и блокирующиеся. Блокирующиеся дифференциалы бывают с принудительной блокировкой и самоблокировкой. В зависимости от места расположения дифференциалы подразделяются на межколесные и межосевые.
Как устроен и работает межколесный дифференциал?
Межколесный дифференциал (рис.132, а) состоит из разъемного корпуса 1, крестовины 3, сателлитов 4, полуосевых конических шестерен 2, соединенных с полуосями 6. К корпусу дифференциала крепится ведомая шестерня 5 главной передачи. Корпус вместе с шестерней вращается на роликовых конических подшипниках, смонтированных в картере ведущего моста. Шестерни-сателлиты 4 свободно вращаются на шипах крестовины, установленной между двумя половинами корпуса 1, и находятся в постоянном зацеплении с полуосевыми шестернями 2, которые свободно закреплены в корпусе 1 и могут вращаться независимо от него. Полуосевые шестерни своими шлицами установлены на полуосях и также могут вращаться независимо от корпуса. Наружные концы полуосей непосредственно опираются на подшипники, имеющиеся в картере ведущего моста, или через ступицы ведущих колес. От полуосей вращение передается на ведущие колеса автомобиля.
Рис.132. Межколесный дифференциал:
а – общее устройство; б – схема работы.
Работает такой дифференциал так. При прямолинейном движении автомобиля ведущие колеса проходят равный путь и испытывают одинаковое сопротивление качению. Крутящий момент от малой ведущей шестерни 7 передается большой ведомой шестерне 5 и полуосевые шестерни 2 вместе с полуосями 6 вращаются с одинаковой частотой, равной частоте вращения корпуса дифференциала, т. е. ведомой шестерни главной передачи. Сателлиты 4 являются как бы клиньями между полуосевыми шестернями и в это время не вращаются вокруг своих осей.
Во время поворота автомобиля ведущие колеса испытывают разное сопротивление. Колесо с большим сопротивлением качению (внутреннее) будет вращаться медленнее (как бы приостанавливается). Сателлиты начинают вращаться вокруг своих осей и перекатываются по замедлившей вращение полуосевой шестерне, ускоряя таким путем вращение внешнего колеса, которое в данный момент проходит больший путь. При шестеренных дифференциалах частота вращения полуосей ведущих колес всегда равна удвоенной частоте вращения корпуса дифференциала. Следовательно, с уменьшением частоты вращения одной из полуосей частота вращения второй полуоси увеличивается на такую же величину.
Какие недостатки присущи шестеренному дифференциалу?
К недостатку шестеренного дифференциала относится пробуксовка одного из колес, попавшего на скользкий участок дороги, что приводит к остановке автомобиля, так как в этом случае дифференциал будет подводить крутящий момент к тому колесу, у которого меньше сцепление с дорогой. Для вывода автомобиля из этого положения необходимо подсыпать под буксующее колесо щебень, песок, шлак для создания равных сопротивлений для обоих колес.
В чем особенность конструкции дифференциала легковых автомобилей?
Особенностью конструкции шестеренных дифференциалов легковых автомобилей является то, что в них устанавливается только два сателлита, расположенные на оси вместо крестовины.
Дифференциал повышенного трения
Как устроен и работает дифференциал повышенного трения?
Дифференциал повышенного трения устанавливается на автомобиле ГАЗ-66 (рис.133) и состоит из двух чашек 1 и 7, опирающихся на роликовые конические подшипники, смонтированные в картере ведущего моста. К левой чашке жестко прикреплен сепаратор 2, в котором просверлено два ряда радиальных отверстий, расположенных в шахматном порядке по 12 в каждом ряду. В отверстия установлены сухари 3, изготовленные из легированной стали, термически обработанные и имеющие высокую твердость. Сухари могут перемещаться и соприкасаться с внутренней (малой) 5 и наружной (большой) 6 звездочками, установленными между чашками 1 и 7. От выпадания и проворачивания сухари удерживаются стопорными кольцами 4. Сепаратор вместе с чашкой дифференциала жестко крепится к ведомой шестерне главной передачи, а звездочки внутренними шлицами соединяются с полуосями 8. На внутренней поверхности звездочки 6 равномерно расположены шесть выступов (кулачков), а на внешней поверхности внутренней звездочки 5 имеется два ряда кулачков, расположенных в шахматном порядке по шесть кулачков в каждом ряду. В рабочем положении сухари соприкасаются с кулачками наружной и внутренней звездочек.
Рис.133. Кулачковый дифференциал повышенного трения.
Работает дифференциал так. При движении автомобиля по прямой ровной дороге частота вращения колес одинаковая, все детали дифференциала вращаются как одно целое вместе с ведомой шестерней главной передачи. Крутящий момент от ведомой шестерни главной передачи передается на сепаратор, а от него через заклиненные между кулачками сухари на звездочки и полуоси. Между колесами в этом случае он распределяется поровну. На повороте или неровной дороге, когда одно из колес вращается быстрее другого, с разной частотой вращаются и звездочки дифференциала. Звездочка, соединенная с отстающим колесом, вращается медленнее и вследствие этого своим н кулачками толкает сухари в сторону второй звездочки, ускоряя ее вращение. При этом сухари скользят по кулачкам. Следовательно, на поверхностях кулачков возникают силы трения, направления которых различны на кулачках отстающей и забегающей звездочек: на отстающей звездочке равнодействующая сил трения направлена в сторону вращения, а на забегающей – в сторону, противоположную направлению вращения. Так как силы трения создают момент относительно оси вращения звездочек, то на отстающей звездочке он складывается, а на забегающей вычитается из крутящего момента. Следовательно, момент, передаваемый на отстающее колесо, оказывается больше момента, передаваемого на забегающее колесо. Это положительно сказывается на проходимости автомобиля. Например, при буксовании одного из колес на второе, вращающееся с меньшей скоростью, передается больший крутящий момент, и проходимость улучшается.
В дифференциале повышенного трения коэффициент блокировки, т. е. отношение усилия тяги небуксующего колеса к суммарному усилию на буксующем и небуксующем колесах равен 0,8, тогда как у шестеренного дифференциала он равен всего 0,55. Следовательно, кулачковые дифференциалы повышенного трения создают лучшие условия для прохождения автомобилем скользких участков дороги. В то же время они значительно дороже шестеренных дифференциалов, что и сдерживает их производство для массового внедрения на автомобилях.
Межосевой дифференциал
Какое назначение межосевого дифференциала, на каких автомобилях он устанавливается?
Межосевой дифференциал устанавливается на автомобилях с двумя задними ведущими мостами (КамАЗ-5320, ЗИЛ-130ГЯ) и служит для равномерного распределения крутящего момента между двумя ведущими мостами. В межосевом дифференциале предусмотрен механизм блокировки, которым можно блокировать оба моста, что значительно снижает буксование ведущих колес на скользящих участках дорог, повышая проходимость автомобиля.
Как устроен межосевой дифференциал?
Межосевой дифференциал автомобиля КамАЗ-5320 (рис.134) состоит из картера 1, прикрепленного к стакану подшипников вала ведущей шестерни 16 среднего ведущего моста. Внутри картера установлены чашки 2 и 6 дифференциала. Между чашками смонтирована крестовина 5, а на шипах ее – свободно конические шестерни-сателлиты 4, находящиеся в постоянном зацеплении с полуосевыми шестернями 3 и 7. Шестерня 3 своими внутренними шлицами установлена на валу 17 и передает через него крутящий момент на ведущую шестерню главной передачи заднего моста. Сама же она может свободно вращаться в чашке 2 дифференциала, а также вместе с ним. Полуосевая шестерня 7 шлицами соединена с шестерней 16 главной передачи среднего моста. На ее хвостовике имеется зубчатый венец 11 для блокировки дифференциала. На венец одета муфта 9 блокировки, которая через вилку 10 соединена с пневмоприводом механизма блокировки. На чашке 6 также выполнен зубчатый венец 8 для блокировки дифференциала. Шестерня 7 может свободно вращаться в чашке 6 дифференциала, а также вместе с ним.
Рис.134. Межосевой дифференциал автомобиля КамАЗ-5320.
Как работает межосевой дифференциал?
Работает межосевой дифференциал так. При движении автомобиля по сухой дороге с несблокированным дифференциалом крутящий момент передается на чашки 1 и 6 и от них на крестовину 5, сателлиты 4 и полуосевые шестерни 3 и 7. Шестерня 3 через вал 17 передает крутящий момент на ведущую шестерню главной передачи заднего моста (на рисунке не показано), а шестерня 7 – на ведущую шестерню 16 главной передачи среднего моста. Следовательно, крутящий момент передается к обоим мостам и автомобиль движется.
Во время движения по мокрой и скользкой дороге необходимо исключить проскальзывание колес ведущих мостов. Для этого включают блокировку дифференциала, повернув рукоятку в кабине автомобиля. При этом воздух из пневматических баллонов тормозного привода по трубопроводу 15 подводится в камеру 14 механизма блокировки, где, воздействуя на диафрагму, выгибает ее и перемещает шток 12, а он через вилку 10 – муфту. Она внутренними зубьями находит на зубчатый венец 8 чашки 6 дифференциала, соединяя ее и шестерню 16 как одно целое, что позволяет вращаться ведущим шестерням главных передач среднего и заднего мостов с одинаковой частотой, что и нужно было получить. В этом случае колеса одного из мостов находятся в более благоприятных условиях, они и движут автомобиль. После преодоления автомобилем трудного участка дифференциал необходимо разблокировать. Для этого достаточно рукоятку в кабине установить в исходное положение, воздух из камеры выходит в атмосферу под давлением пружины 13, воздействующей на диафрагму, и вилка выводит муфту из зацепления с зубчатым венцом 8.
Вал ведущего колеса (полуось)
Какое назначение полуосей на автомобиле, как они подразделяются?
Полуоси служат для передачи крутящего момента от полуосевых шестерен к ступицам ведущих колес. В зависимости от расположения подшипников полуоси воспринимают различные нагрузки и подразделяются на полуразгруженные, устанавливаемые в основном на легковых автомобилях, и полностью разгруженные – на грузовых автомобилях.
Как устроена полуразгруженная полуось, какие силы действуют на нее?
Полуразгруженная полуось (рис.135, а) одним концом соединяется с полуосевой шестерней в корпусе дифференциала, которая одним концом опирается на роликовый конический подшипник 3 картера ведущего моста, другим – на шарикоподшипник 1 в расточке полуосевого рукава. На этом конце полуоси закреплена ступица с колесом 4.
Рис.135. Типы полуосей:
а – полуразгруженная; 6 – полностью разгруженная.
При движении автомобиля на полуразгруженную полуось действуют такие силы: крутящий момент М, передаваемый на колесо и скручивающий полуось; осевая сила Т, возникающая при боковом скольжении колеса и хорошем сцеплении его с дорогой (действует на плечо R и изгибает полуось в вертикальной плоскости); сила F, возникающая на колесе от массы, приходящейся на него (действуя на плечо а, изгибает полуось также в вертикальной плоскости); тяговое усилие Р направлено перпендикулярно к плоскости фигуры и возникающее на колесе из-за действия крутящего момента, подводимого к нему, при достаточном сцеплении колеса с дорогой. Тяговое усилие P действует на плечо и изгибает полуось в горизонтальной плоскости. При торможении автомобиля, вместо тягового усилия на полуось действует тормозное усилие, направленное в противоположную сторону. Так как масса и крутящий момент у легковых автомобилей невелики, то полуразгруженные полуоси выдерживают указанные нагрузки и отвечают требованиям компактности автомобиля.
Как устроена разгруженная полуось, какие силы она воспринимает?
Полностью разгруженная полуось (рис.135, б) одним концом соединяется с полуосевой шестерней и лежит в корпусе дифференциала, а другим – со ступицей колеса 4, которая устанавливается на двух роликовых конических подшипниках 5 на конце полуосевого рукава картера ведущего моста. При такой установке полуоси она передает только крутящий момент М. Все остальные силы воспринимаются через подшипники балкой ведущего моста. Полностью разгруженные полуоси при значительных нагрузках, приходящихся на задний мост у грузовых автомобилей, работают более надежно. На рисунке 136 показан ведущий мост автомобиля ЗИЛ-130.
Рис.136. Ведущий мост автомобиля ЗИЛ-130:
1 – картер; 2 – чашка; 3 – ведомая коническая шестерня; 4 – ведущая цилиндрическая шестерня: 5 – корпус дифференциала; 6 – ведомая цилиндрическая шестерня; 7 – полуось; 8 – тормозной барабан; 9 – тормозная колодка; 10 – подшипники; 11 – шпильки для крепления колеса; 12 – рессора; 13 – стремянки; 14 вал; 15 – ведущая коническая шестерня; 16 – фланец.
Как устроен и работает передний ведущий мост?
Передний ведущий мост автомобиля ГАЗ-66 (рис.137, а) состоит из картера, в котором смонтированы главная передача, дифференциал и полуоси такие же, как и в заднем ведущем мосту. Особенность состоит в том, что крутящий момент от полуосевых шестерен к ступицам колес передается под изменяющимся углом. Поэтому каждая полуось расчленена. Между двумя частями полуоси 2 и 9 устанавливается карданный шарнир равных угловых скоростей (рис.137, б), состоящий из двух фасонных вилок 10 и 12 с овальными канавками, одного центрирующего 15 и четырех ведущих 14 шариков. Центрирующий шарик имеет сверление, лыску и крепится на пальце 16, затем стопорится шпилькой, проходящей через отверстие 17 вилки.
Рис.137. Передний ведущий и управляемый мост:
а – устройство; б – шариковый карданный шарнир; в – кулачковый карданный шарнир.
При вращении ведущей вилки усилие на ведомую передается через шарики. Так как они свободно перекатываются в своих канавках, то угол между вилками шариками делится пополам в каждый данный момент, что и обеспечивает равномерную передачу крутящего момента на повернутые управляемые колеса под углом до 40°. Вал 2 ведомой вилки 12 проходит внутри полой поворотной цапфы 4 и своими шлицами входит в шлицы фланца 1, соединенного шпильками со ступицей колеса 13. Ступица смонтирована на поворотной цапфе на двух роликовых конических подшипниках 3. Поворотная цапфа 4 вместе со ступицей установлена в разъемном корпусе 7 на шипах 11 шкворней на роликовых конических подшипниках 5. Шипы приварены к сферической чашке 8 кожуха полуоси. Поворотная цапфа рычага 6 соединяется с тягами рулевого управления автомобиля.
В чем особенность устройства карданных шарниров равных угловых скоростей, используемых на автомобилях «Урал» и КрАЗ?
На автомобилях «Урал-4320», КрАЗ-260 и других в полуосях переднего ведущего моста устанавливается кулачковый карданный шарнир равных угловых скоростей (рис.137, в), который состоит из двух вилок 18 и 22, двух цилиндрических кулаков 19 и 21 и диска 20. Этот диск заходит в четырехугольные пазы кулаков и передает вращение от ведущей вилки к ведомой. В вертикальной плоскости вилки поворачиваются вокруг кулаков, а в горизонтальной – вместе с кулачками вокруг диска. Такой карданный шарнир работает подобно двум сочлененным простым жестким карданным шарнирам, из которых первый создает неравномерность вращения, а второй устраняет ее, чем достигается вращение полуосей с одинаковой частотой. В остальном устройство моста подобно вышеописанному.
Неисправности карданной передачи и ведущего моста
Какие неисправности могут быть в карданной передаче и ведущем мосту?
Основными неисправностями в карданной передаче могут быть: износ подшипников, крестовин, шлицевых соединений, трещины, изгиб и скручивание карданного вала, в ведущем мосту – поломка зубьев или их чрезмерный износ на шестернях главной передачи, сателитов, полуосевых шестерен, скручивание валов, трещины корпусов, износ шлицов, осей, валов, подшипников, сальников, уплотнительных прокладок.
Какие признаки неисправностей карданной передачи?
Признаками неисправной карданной передачи являются рывки и удары при трогании автомобиля с места или при переключении передач в движении. Биение карданного вала указывает на его погнутость.
Как устраняют неисправности карданной передачи и ведущего моста?
Изношенные крестовины, подшипники, шлицевые втулки, валы заменяют новыми или исправными. Увеличенный зазор в роликовых конических подшипниках устраняют регулировкой. Сильно изношенные подшипники, шестерни и сателлиты заменяют новыми (шестерни заменяют одновременно обе: ведущую и ведомую). Подтекание масла из картеров может быть из-за износа сальников, пробитых уплотнительных прокладок, недостаточной затяжки болтов, появления трещин. Изношенные сальники и пробитые прокладки заменяют новыми. Ослабшие крепления подтягивают. Трещины в картере заваривают.
Источник информации Сайт: http://avtomobil-1.ru/
Cтраница 1
Шарнирный вал 4, вращаясь вместе с ротором 5, вращает диск 2, что обеспечивает распределение жидкости между рабочими камерами насоса. Рулевой механизм имеет сдвоенный предохранительный клапан.
Конец шарнирного вала опирается на подвижный упор, который с помощью системы рычагов связан с упором / С, как показано на схеме. При встрече каретки с неподвижным упором D червяк В и червячное колесо F останавливаются, а продолжающая вращение подвижная часть Е муфты вследствие фигурного скоса будет стремиться разъединиться с неподвижным червяком, перемещаясь на предохранительную пружину.
Рулевое управление состоит из шарнирного вала, одноступенчатого редуктора и цепной передачи.
Рулевое управление состоит из шарнирного вала с рулевым колесом, цилиндрического редуктора и цепной передачи. Крутящий момент от рулевого вала передается на вал-шестерню редуктора, а затем посредством цепной передачи - на поворотный диск, в котором закреплен привод ведущих колес.
После демонтажа одного из шарнирных валов необходимо сразу поставить транспортную заглушку (или пробку с удлинителем) для фиксации полуосевой шестерни.
Рулевое управление состоит из шарнирного вала одноступенчатого редуктора и цепной передачи.
Ось инвентарного барабана соединена с шарнирным валом привода. Вращение инвентарного барабана осуществляется через червячный редуктор привода. Скорость движения проволоки 2.2 м / мин.
Перехватные шпиндели 2 вращаются синхронно с рабочим шпинделем 1 посредством конической зубчатой передачи в револьверной головке и шарнирного вала.
После закрепления приспособления на корпусе привод при помощи рукояток 5 и б устанавливают так, чтобы переходная втулка шарнирного вала 2 находилась против хвостовика ведущего вала приспособления, которое соединяют с приводом и, включив электродвигатель, обрабатывают корпус. Эти детали служат для неподвижной установки приспособления в корпусе. На наружном листе закреплена направляющая втулка 3, внутри которой проходит шпиндель 2 с сидящими на нем фрезами - большой 4 и малой 7, предназначенными для обработки соответственно большого и малого отверстий. На другой конец шпинделя надевается переходная втулка 1, хвостовик которой соединяют с шарнирным валом привода.
Подналадчик (рис. 13) устанавливают на выходе прутка из шлифовальных кругов станка на трех литых тумбах 19, соединенных между собой шарнирным валом 17, на конец которого надевается съемная ручка 7 для регулировки положения рольганга по высоте относительно оси обрабатываемого прутка.
Нижнее приводное электродное устройство машины МШ-3207 (рис. 5.68, б) аналогично верхнему, но снабжено цилиндрической зубчатой парой 4, 5, соединенной шарнирным валом с приводом вращения. Сварочный ролик 1 закреплен на валу через промежуточную то-коведущую резьбовую втулку 2, фиксируемую контргайкой 3, что позволяет легко совмещать сварочные ролики в одной плоскости. В машине МШ-3207 (МШ-2005) в отличие от МШ-2202 сварочный ролик выступает за переднюю плоскость машины, что дает возможность сваривать узлы по отбортовке.
Для передачи крутящего момента между валами, расположенными один относительно другого под углом, изменяющимся в процессе работы, в технике часто применяют карданные шарниры. Свое название они получили по фамилии итальянского ученого Д. Кардано, впервые создавшего такое сочленение. Благодаря простоте, надежности, малой массе, высокому КПД и долговечности они широко используются в трансмиссии автомобилей. Но карданное сочленение, называемое еще шарниром Гука (по имени механика, его усовершенствовавшего), имеет и существенный недостаток. Это несинхронность вращения - неравенство угловых скоростей ведущего и ведомого элементов.
При постоянном числе оборотов ведущего элемента этого шарнира угловая скорость ведомого меняется циклически: каждую четверть оборота она то растет, то замедляется. Такое чередование создает дополнительные инерционные пульсирующие нагрузки в соединяемых деталях. Резко возрастая с увеличением числа оборотов валов, соединенных шарниром, увеличением угла между ними, эти дополнительные нагрузки могут многократно превысить нагрузки от передачи крутящего момента, на которые рассчитан узел. Под их воздействием убыстряется износ шарниров. Вот почему простые карданные сочленения используют главным образом, когда угол между ведомым и ведущим элементами не превышает 7-8° и динамические нагрузки еще невелики.
С появлением машин с независимой подвеской колес, автомобилей повышенной проходимости, а также с передними ведущими колесами («За рулем», 1982, № 2) понадобилось связывать между собой валы, углы между которыми могут достигать 30-40°. Естественно, такой шарнир должен обеспечивать синхронность передачи вращения, чтобы быть достаточно долговечным.

Первые конструкции синхронных сочленений, называемых также шарнирами равных угловых скоростей (по-латыни - «томокинетическими»), были созданы посредством спаривания простых карданных шарниров и поэтому получили название сдвоенных. Принцип их действия таков: частота вращения валов на входе и выходе шарнира будет равной, если внутренние вилки двух последовательно соединенных шарниров лежат в одной плоскости, а угол между осями вилок одинаков. Иными словами, точка, где пересекаются оси вилок, должна лежать на биссектрисе угла, который они образуют. Два простых шарнира соединяются либо непосредственно, либо через промежуточное (его называют делительным) звено, внутри которого есть центрирующее устройство. Назначение последнего - постоянно делить пополам угол между осью внутренней сдвоенной вилки и наружными вилками.

Сдвоенный шарнир может работать при углах между валами до 40°. Его достоинство - отсутствие кожухов для удержания смазки, недостаток - сравнительно небольшой пробег: не выше 50 тысяч километров. Сдвоенные шарниры в свое время нашли применение на автомобилях ряда французских фирм, а также на наших МАЗ-501, МАЗ-502 , МАЗ-509.
Дальнейшим развитием этой конструкции стал кулачковый шарнир фирмы «Тракта» (рис. 1). Вилки 1 и 17, изготовленные заодно с валами, соединяются в нем через два фигурных кулачка 3. При работе сочленения кулачки смещаются один относительно другого в горизонтальной плоскости, а вилки - в вертикальной по канавкам соответствующего кулачка. Между собой кулачки соединены в шип. Все детали шарнира заключены в корпусе, постоянно задающем такое взаимное положение вилок, при котором точка, где пересекаются оси валов, всегда лежит на биссектрисе угла между ними. В связи с тем, что кулачки шарнира при поворотах занимают разные положения относительно других его частей, возникает циклический дисбаланс, который на высоких оборотах может ускорить износ шарнира. Поэтому сочленение «Тракта» применяют преимущественно на грузовиках повышенной проходимости, где шарниры работают с меньшей скоростью.

Разновидностью кулачкового шарнира является кулачково-дисковый (рис. 2), устанавливаемый, в частности, на автомобилях «Урал-4320» , КрАЗ-255Б. Он состоит из связанных с ведущим и ведомым валами вилок 1 и 17, а также вставленных в них цилиндрических кулачков 3. В их пазы входит диск 6, передающий вращение от ведущей вилки ведомой. При работе каждый из кулачков поворачивается одновременно относительно вилки и оси диска. В вертикальной плоскости вилки поворачиваются вокруг кулачков, а в горизонтальной - вместе с ними вокруг диска, так как ось паза в кулачке перпендикулярна оси его внешней цилиндрической поверхности. Оси отверстий вилок лежат в одной плоскости, которая совпадает со средней плоскостью диска. Они расположены на равных расстояниях от точки, где пересекаются оси валов, и всегда перпендикулярны им. Точка пересечения осей отверстий при любом положении вилок располагается в биссекторной плоскости, то есть плоскости, делящей угол между вилками пополам.

Благодаря большой контактной поверхности деталей, воспринимающих усилия, кулачково-дисковый, как и всякий кулачковый шарнир, имеет компактные размеры. Он особенно удобен на грузовых автомобилях, где нужно передавать большой крутящий момент. Основной недостаток конструкции в том, что сопряженные детали работают в условиях трения скольжения. Это приводит к повышенному нагреву всего узла и снижает его КПД. Однако при хорошей смазке износостойкость и надежность работы этих шарниров вполне удовлетворительны. Максимальный угол, при котором может работать сочленение, 45-50°.
Поиски путей повышения КПД и срока службы привели к разработке синхронных шарниров, в которых крутящий момент передается посредством шариков, всегда лежащих в биссекторной плоскости.

Первой конструкцией такого рода явился шариковый шарнир «Бендикс-Вейсс» (рис. 3), который работоспособен при углах между валами до 40°. Валы 1 и 17 оканчиваются вилками (их называют также кулаками), на внутренней поверхности которых во взаимно перпендикулярных плоскостях выполнены четыре канавки полукруглого профиля. В местах, где перекрещиваются канавки двух вилок, расположено по одному шарику 8.
Средние линии канавок представляют собой окружности одинакового радиуса, центры которых лежат на соответствующих вилках и равноудалены от центра всего шарнира. При вращении эти линии образуют две сферические поверхности, пересекающиеся одна с другой по окружности, которая и является траекторией движения шариков. Благодаря симметричному расположению канавок в обеих вилках центры шариков всегда находятся в биссекторной плоскости, чем и достигается равномерность вращения валов. Однако даже небольшое осевое перемещение одной вилки относительно другой вызывает изменение траектории движения шариков. Поэтому вилки фиксируют от перемещения под действием осевых сил, устанавливая между ними центрирующий шарик 13.

Поскольку шарнир такого типа не является самостоятельным узлом, его трудно изготовить с малыми зазорами между канавками и шариком и отбалансировать. Это обстоятельство отрицательно сказывается при высокой скорости вращения, и данная конструкция применяется только на автомобилях повышенной проходимости (УАЗ-469, ГАЗ-66 , ЗИЛ-131), где такая скорость не достигается. Кроме того, в ней крутящий момент передают лишь два шарика, чем предопределяются высокие удельные давления на контактирующих поверхностях и быстрый износ (через 15-25 тысяч километров) шарниров. Это не позволяет использовать их на тех машинах, у которых привод к передним колесам включен постоянно.
Более совершенна конструкция шарикового шарнира «Рцеппа» (рис. 4), в собранном виде представляющего собой отдельный узел. В нем крутящий момент в обоих направлениях передается всеми шариками 8, благодаря чему значительно выше долговечность (до 100-150 тысяч километров). В результате при меньших размерах шарнира можно передавать больший крутящий момент и использовать его в постоянно работающих приводах колес (ВАЗ-2121, а ранее - ЗИС-32). Однако сочленение «Рцеппа» сложнее и дороже шарнира «Бендикс-Вейсс».

Детали шарнира заключены в сферическом корпусе 2, на внутренней поверхности которого нарезаны шесть равнорасположенных полукруглых канавок. Такие же канавки сделаны на обойме 7, во внутренние шлицы которой входит ведомый вал 17. Крутящий момент передается от корпуса 2 обойме 7 шариками 8. При изменении угла (до 35°) между валами делительное устройство автоматически устанавливает шарики в биссекторной плоскости. Оно состоит из сепаратора 4, в котором расположены шарики, сферической опорной шайбы 11 и делительного рычажка 12. Рычажок, проходя через отверстие в опорной шайбе, входит сферическими поверхностями в сферические гнезда ведущего 1 и ведомого 17 валов, а пружина 15 прижимает его к валу 1.
В упрощенных вариантах этой конструкции роль делительного механизма выполняют канавки. В одном из них (рис. 5) центр, из которого описаны дуги канавок корпуса и обоймы, смещен от центра шарнира на 1-1,5 мм (шарнир «Рцеппа-Бирфильд»). В другом варианте (рис. 6), известном как «Рцеппа-Лебро», канавки эллиптического профиля попарно симметричны и расположены под углом 16° к образующим внутренней поверхности корпуса и наружной поверхности обоймы. В результате пересечения в пространстве разнонаправленных канавок корпуса и звездочки шарики всегда лежат в биссекторной плоскости.

На автомобилях «Пежо» и «Рено» , например, применяют трехшиповой синхронный шарнир «Трипод» (рис. 7). В нем крутящий момент передают три сферических ролика 9, которые насажены на шипы крестовины 7, связанной с ведущим валом 1, и скользят в цилиндрических пазах вилки ведомого вала 17. Ролики всегда находятся в биссекторной плоскости шарнира. Он технологически проще шариковых, допускает углы между валами до 40°, однако его кинематика не обеспечивает полной синхронности передачи вращения.
Отметим, что ни одна из рассмотренных конструкций не рассчитана на взаимные осевые перемещения валов, неизбежно возникающие при движении колеса по неровностям дороги. Поэтому сейчас созданы шарниры (рис. 8 и 9), которые допускают взаимное продольное перемещение ведущего и ведомого валов на 13-24 мм при углах между валами до 18°.
Таким образом, современное автомобилестроение располагает достаточным выбором конструкций, хорошо сочетающих простоту и технологичность с надежностью и долговечностью.
УСТРОЙСТВО ШАРНИРОВ РАВНЫХ УГЛОВЫХ СКОРОСТЕЙ: 1 - ведущий вал (вилка); 2 - корпус; 3 - кулачок; 4 - сепаратор; 5 - запорное кольцо; 6 - диск; 7 - обойма или крестовина; 8 - шарик; 9 - ролик; 10 - вилка; 11 - опорная шайба; 12 - делительный рычажок; 13 - центрирующий шарик; 14 - центрирующий штифт; 15 - пружина; 16 - пробка или втулка; 17 - ведомый вал (вилка). Красным цветом выделены элементы, передающие крутящий момент от ведущего звена шарнира к ведомому.
В. БАРАНОВ, инженер («За Рулем» №6, 1982)
Литература
Гольд Б. В. Конструирование и расчет автомобиля. М., Машгиз, 1962.
Гринченко И. А. и др. Колесные автомобили высокой проходимости. М., Машиностроение, 1967.
Литвинов А. С., Ротенберг Р. В., Фрумкин А. К. Шасси автомобиля. М., Машгиз, 1963.
Малаховский Я. Э., Лапин А. А., Веденеев Н. К. Карданные передачи. М., Машгиз, 1962.
Справочник инженера автомобильной промышленности. Т. 2. Пер. с англ. М., Машгиз. 1963.
